
www.embedded-world.eu

Safe Program Execution with Diversified Encoding

Martin Süßkraut, André Schmitt, Jörg Kaienburg
SIListra Systems GmbH

Dresden, Germany
{martin.suesskraut, andre.schmitt, joerg.kaienburg}@silistra-systems.com

Abstract—Currently, hardware designed and certified for
safety-critical systems is one important building block for any
safety-critical application. Such hardware provides the detection
of execution errors. However, many modern safety-critical
applications, like autonomous driving, require features and
performance levels that are not available from safety-certified
hardware. The solution to this problem is to use hardware that is
not certified for safety-critical systems, for example consumer-
graded hardware, but fulfills the requirements. Additionally, a
software solution provides the detection of execution errors.

This paper introduces such a software solution called
"Diversified Encoding with Coded Processing". Due to its
hardware-independence, this solution provides the flexibility to
build safety-critical systems from non-safety-critical hardware
components. This solution can be automated with a code
transformation tool to further increase the flexibility.

Keywords—safety, ISO 26262, IEC 61508, software coded
processing, software diversification

I. INTRODUCTION

Traditionally, safety-critical hardware is designed for
detecting execution errors. Current non-safety-critical hardware
or consumer-graded hardware, respectively, are typically
unable to detect execution errors but provide significantly
higher performance. Hence, safety-critical systems that require
high performance or special features that are only available in
consumer-graded hardware, e.g. GPUs, need a new solution for
detecting execution errors.

This paper gives an introduction into the software solution
called "Diversified Encoding with Software Coded
Processing": A solution to continuously detect execution errors
at runtime and allowing to make any system intrinsically safe.
Because, diversified encoding is hardware-independent it can
be used with consumer-graded hardware. After the introduction
in Section I, Section II introduces an examples which will be
used during the complete paper. Sections III and IV introduce
software coded processing and diversified encoding,
respectively. Section IV also contains the safety arguments for
diversified encoding.

ISO 26262 lists coded processing in Volume 5 under
D 2.3.6 as a technology to detect hardware errors [5].
IEC 61508 lists coded processing in volume 2 in A.4 [4].
Coded processing in combination with diversified encoding is a
flexible solution to detect execution error with the potential to
fulfill ASIL-D and SIL4 requirements. ASIL-D and SIL4 are
the highest safety levels of the ISO 26262 and IEC 61508,
respectively. For SIL4, the IEC 61508 additionally requires
hardware redundancy. The utilization of diversified encoding
via a fully automated code transformation tool allows the
efficient deployment of diversified encoding across different
industries, e.g. automotive, medical, automation, rail, and
avionics.

Section V introduces a code transformation tool for
generating the diversified encoding solution. To achieve this,
the tool takes the source code of such a safety function as its
input. The output of the tools is again source code. This
generated source code provides the same functionality as the
given safety function plus the capability to detect hardware
errors.

The novelty of the presented tool is the broad support for
the C programming language. The diversified encoding
solution automatically safe-guards against transformation
failures of any transformation tool. Previous approaches using
coded processing do not have these properties.

The paper concludes in Section VI with a discussion of the
advantages of the diversified encoding approach: hardware-
independence, flexibility of software and tool support for the C
programming language. As one of the intended side effects,
diversified encoding decouples hardware-error detection and
functionality. Major advantages of diversified encoding are
hardware-independence and higher flexibility in setting up
system architectures. Hence, development and innovation
cycles could be expedited. The presented technique of
diversified encoding with coded processing allows system
architectures equipped with safety functions while running on
non-certified hardware – something that yet has not been
possible.

II. EXAMPLE

The following exemplary safety function will help to
explain and demonstrate the diversified encoding and its
properties and advantages. This example focuses on the overall
approach of diversified encoding and code generation.

The example safety function is a safe counter. It has the
following specification:

1. The safe counter is one shared 32-bit counter unsigned
integer value.

2. The initial counter value is 1.

3. The safe counter has an interface to query the current
counter value and to increment the counter value by a
given unsigned integer value.

4. Execution errors while executing the safe counter must
be detected.

For a real world application, one needs to extend this
specification to include aspects like integer overflow and
concurrency.

The software developer designs an interface from this
specification: uint32_t incSafeCounter(uint32_t
incValue).

The implementation itself does not contain any specific
measures to detect execution errors. Sections III and IV
demonstrate how to automatically generate the source code to
detect execution errors. Especially Section IV.C shows how to
change the interface to enable the detection and handling of
execution errors. The following source code shows a possible
implementation of this safety function (with C99 fixed-width
integer types1):

/* include standard C library
for fixed-sized integer types */

#include <stdint.h>

/* the safety critical counter variable */
static uint32_t safeCounter = 1;

/* interface of the counter */
uint32_t incSafeCounter(uint32_t incValue) {

safeCounter += incValue;
return safeCounter;

}

III. SOFTWARE CODED PROCESSING

Diversified encoding builds on the coded processing
technology [1]. Software coded processing (SCP) adds
information redundancy to a software program to enable it to
detect execution errors. To integrate SCP into a software
program one has to either rewrite the program manually or one
can use an automated transformation tool. SCP is applied to the
complete data flow of a program. In other words, all constants,
variables and operations have to be re-programmed while
making use of SCP.

1 The type uint32_t is a 32-bit unsigned integer. The type
uint64_t is a 64-bit unsigned integer.

The literature describes different encodings. The most
prominent encoding is the AN encoding: Every value in the
program is a multiple of a constant A [2]. AN is the name of
the encoding and not an abbreviation. Values that are not
multiples of A are considered as invalid. With SCP, all
operations in a program must work with these encoded values.
An execution error produces invalid values.

A helpful example is the summation 2 + 3. Encoding with
A = 7, the calculation turns into 14 + 21. Without an execution
error, the result is 35 and valid value because it is a multiple of
7. The criterion which decides whether the result is valid or
invalid is the property that valid results are a multiple of A. If
not, results are considered as invalid.

Two principle kinds of execution errors can influence the
result:

 One of the input values was already an invalid value.
This can either happen because of a bit-flip in the
memory, that holds the value, or when the value was
already the result of an erroneous computation. For
example, if the 14 changes into a 13, the result is 34
which is not a multiple of 7.

 The operation itself can be incorrect. For example, the
summation could add an additional 2 to the result. Then,
the result is 37, which is not a multiple of 7 and, again,
not a valid value.

An encoded program can check any encoded variable at
any point in time. However, for performance reasons it is better
to only check the output values (see Section IV.E). In-between
checks are not necessary because the error propagates through
the data flow of the program.

The source code below shows the example from Section II
with a simplified AN encoding for A = 7:

/* include standard C library
for fixed-sized integer types */

#include <stdint.h>

/* 1 is AN encoded 7 */
static uint64_t safeCounter = 7;

uint64_t incSafeCounter_encoded(
uint64_t incValue)

{
safeCounter =

add_encoded(safeCounter, incValue);
return safeCounter;

}

The main differences between the native safety function
and the encoded safety function are:

 Data types: The data types change from uint32_t to
uint64_t. SCP needs additional bits for the
information redundancy. For instance, the largest 32-bit
unsigned value 4,294,967,295 encoded with A = 7 is
30,064,771,065. This value does not fit into 32-bit.

www.embedded-world.eu

 Constants: All constants must be AN encoded. In the
example, the initialization value of safeCounter is
now 7 – the AN encoded 1.

 Operations: Encoded operations replace all native
operations. Encoded operations operate on encoded
values like native operations operate on native values.
For instance, the add_encoded returns the encoded
sum of its two encoded input values.

The safety of the AN encoding depends on the constant A.
The following properties of A influence the safety of AN
encoding:

 Size: The larger A the more safe is the encoding. If n is
the number of bits required to represent all native values
(e.g. 32-bit) and k is the number of bits to represent A
(e.g. 3 bits for A = 7) n + k bits are needed to represent
all encoded values. The number of valid encoded values
is the same as the number of all native values: 2n. Only
these 2n out of all words representable with n + k bits
are valid words. All other words are invalid. The
probability for a completely random error to change a
valid word into another valid word is roughly 2n/2n+k =
1/2k. The probability 1/2k depends only on the size of A.

 Hamming Distance: Because computers represent
values as binary words, the hamming distance of the
AN encoding is also important. The hamming distance
depends on the value of A. For example, A should
never be a power of 2, because the resulting AN
encoding has the hamming distance of 0. The reason is
that multiplying with a power of two is the same as a
shift. In fact, A should be odd.

AN encoding is not the only encoding for SCP. Examples
for other encodings are the ANB and the ANBD encoding [3].
Both are built on AN and introduce encoding parameters B and
D additional to the encoding parameter A. The goal of these
encodings is to detect execution errors that cannot be detected
with AN alone. For example, if – due to an execution error – an
addition changes into a subtraction, the result is still a valid AN
encoded value.

The additional encoding parameters increase the
complexity of the encoding and, hence, they increase the
required CPU resources. The solution to detect execution errors
is the diversified encoding (Section IV). One of the advantages
of the diversification is that its complexity and required CPU
resources are lower than with ANB and ANBD encodings.

IV. DIVERSIFIED ENCODING

A. Overview

Diversified encoding is based on two distinct executions of
the same safety function. These two executions are:

 Native Execution: The native execution is the result of
the original source code of the safety function. This
source code operates on the native input values and the
native state. The native execution only changes native
state. The result of the native execution is the native
output.

 Encoded Execution: The encoded execution is based
on the encoded variant of the safety function. The
encoded execution operates on encoded input values
and on the encoded state. It produces an encoded
output.

Both executions are completely distinct computations but
operate on the same values. The encoded input values are the
encoded variants of the native input values. The source code of
the original, native code is used to generate the encoded source
code thereof. This can be done either manually or,
recommended due to the high degree of reproducibility, via a
code transformation tool.

A diversity framework manages both executions. The
transformation tool generates the source code of the diversity
framework from the source code of the original safety
functions.

The component that uses the safety function can detect and
handle execution errors with the help of checksums. We call
such a component a caller. The diversity framework generates
two checksums: one over the native output values and another
over the encoded output values. A caller operates solely on the
native input and output values. After executing the safety
function, a caller must compare the checksum over the native
and encoded output values to verify whether the native output
values are from an error-free execution. Section IV.E shows an
example for such a check. If these checksums differ, an
execution error has happened.

Fig. 1 shows the dataflow of a safety function with the
diversified encoding solution. The data flow starts at (1) with
the native input state. The native input state is protected by a
checksum. A caller must calculate this checksum, as soon as
the caller has assembled the input state. Section IV.D contains
a detailed discussion of the native input values and the
checksum. When a caller executes the safety function, it passes
the control to the diversity framework. In step (1), the diversity
framework encodes and checks the native input values. Step (1)
produces the encoded input values for step (2). The diversity
framework uses the input checksum over the native input
values to check the correctness of the encoded input values.
Next, in step (2), the diversity framework executes the encoded
safety function. The encoded safety function reads the encoded
input values and the encoded internal state. It performs its

original (native)
functional code

→ native safety function

protected
functional code

→ encoded safety function

native
input
values

encoded
values
(input)

native
output
values

encoded
values

(output)

encoded
internal state

native
internal state

encoding
+ check

calculate
CRC

input
checksum

2

3
1

4

output
checksum

Fig. 1. Data-flow model of diversified encoding.

calculations, updates the encoded internal state and produces
the encoded output values. In step (3), the diversity framework
executes the native safety function. The native safety function
reads the native input values and the native internal state. It
updates the native internal state and produces the native output
values. In the last step (4) the diversity framework calculates
the checksum of the native output values over the encoded
output values. Then the diversity framework passes the control
back to the caller. It’s the caller’s responsibility to check the
checksum of the native output values.

The safety function works with the following parts:

 native input values

 input checksum

 native safety function

 diversity framework (including the encoded safety
function) generated by the code transformation tool

 native output values

 output checksum

The code generation tool generates the source code of the
steps (1), (2) and (4). Steps (1) and (4) are part of the diversity
framework. Step (2) is the encoded safety function. The source
code of step (3) is the original source code of the native safety
function.

The control flow of the native and encoded safety functions
are similar. In order to safely detect control flow errors, the
code transformation tool can generate control flow checks into
the encoded safety function. These control flow checks build a
separate data flow which mirrors the control flow. A control
flow error influences only the control flow and not this separate
data flow. A caller detects control flow errors, because the
result of the data flow does not match the control flow. The
diversity framework integrates the data flow of the control flow
checks in a way, that every control flow error invalidates the
output checksum. State-of-the-art control flow checks support
any C99 control flow including function calls, if-else, for-
loops, while-loops, do-while-loops, break, continue, switch and
even goto.

B. Safety Argument for Single Execution Errors

Execution errors can either happen transient, e.g. as soft
error due to radiation, or permanent, e.g. due to hardware
aging. Transient errors influence by definition only a small part
of an execution. Permanent errors are also called common
cause errors. They influence larger parts or several parts of an
execution in the same way. Execution errors can influence
three aspects of an execution: the data flow, the control flow,
and the timing. The data flow is the data stored in a system
together with all calculations (arithmetic, comparison, etc.) that
a safety function performs on this data. The control flow are all
decisions that a safety function contains (loops, function calls,
etc.). The timing is the timely execution of the safety function.
Execution errors can interfere with the timing by making the
execution too slow or stopping the execution completely. In
this sense, a crash is also a timing error.

Execution errors without influence on the result of a
computation, i.e. the output values of the computation, can be
ignored.

The safety argument starts with transient execution errors.
Fig. 1 shows the four steps of the data flows within the
diversified encoding. All four steps happen in sequence.
Hence, any transient error – according to the definition of
transient – influences exactly one of these steps. The following
discussion argues for each step individually, that a caller
detects any transient error happing in this step when the caller
checks the output checksum.

 Step (1) encodes the input values. Any transient error
can either falsify the native input value or the encoded
input value. In case the native input value is
erroneously changed, the input checksum does not
match the native input values any more. The same is
true, when the transient error changes encoded input
values. The diversity framework propagates this
mismatch to the output checksum. Therefore, the
diversity framework first adds the encoded checksum
of the encoded input state to the output checksum and
then encodes and subtracts the input checksum.
Without any execution error, the output checksum is
not changed and both checksum values are identical.
And in case the execution error produces invalid
encoded input values, the diversity framework detects
this error because the encoded input checksum
becomes invalid.

 Any error that influences the execution of the encoded
safety function propagates to the encoded output value
and/or to the encoded state. If the error influences none
of them, there is no effect on the execution of the
encoded safety function. Then, the error can be
ignored. When the error influences the encoded output,
the diversity framework will generate an output
checksum that does not match with the checksum over
the native output values because the latter ones were
not influenced by the transient error. But in case the
error influences the encoded state only, the error
remains dormant. The output checksum will be correct
because the encoded output values are correct. The
error can propagate (depending on the implementation
of the safety function) to the output in a later
execution. But it will be detected then. It is important
to note the fact that the dormant error in the encoded
state can only propagate to the encoded output and
nowhere else. When it propagates it will be detected
because it falsifies the output checksum. As long as the
error does not propagate into the encoded output values
it has no effect and, thus, can be ignored.

 The argument for any error that influences the
execution of the native safety function follows the
arguments of step (2). But now, the error influences the
output values directly. Because the error is transient, it
does not influence the encoded output values and,
hence, it does not influence the output checksum.
Therefore, the output checksum will not match the
output values and the error will be detected. Again, the

www.embedded-world.eu

error may only influence the native state and remain
dormant. In this case, the argument for step (2) applies:
In the first execution, where the dormant native state
error influences the output values, the error will be
detected.

 Step 4 only works on the encoded output values and
produces the output checksum. Hence, any transient
error here can only influence the output checksum.
Therefore, the diversified encoding detects this
transient execution error when the comparison of the
output values with the (erroneous) output checksum is
done.

In the moment a control flow error takes place within any
part of the diversified encoding that influences the data flow of
this part, the data flow arguments above apply. A control flow
error that does not influence the data flow has no effect and can
be ignored. However, a control flow error can also skip or
repeat steps of the diversified encoding. Steps (1) and (4) can
be repeatedly executed without any negative effect. Repeated
executions of steps (2) and (3) due to their internal states may
either falsify their outputs and/or their internal states. Then, the
aforementioned arguments about the data-flow errors apply.
Skipping steps (1), (2) or (4) produces the wrong and perhaps
old output checksum that does not match the output values.
Skipping step (3) does not update the output values and, hence,
the output values do not match the output checksum. A caller
can detect the skipping of the whole execution of the safety
function including the diversified encoding by setting the
output checksum variable to a constant that is unlikely to be the
next output checksum. In general, 0 is a good value for this
constant.

A transient error can influence the timing, e.g. the safety
function can execute too slow, stop, or crash because of a
transient error. These cases can be detected with the help of a
watch dog (see below).

In summary, the diversified encoding detects with a high
likelihood all transient execution errors that influence the
execution of a safety function with diversified encoding.

The second and last part of the safety argument discusses
common mode execution errors. A common mode execution
error influences more than one part of the execution in the
same way. The steps (1), (2) and (4) of diversified encoding
work on or produce encoded values. Step (2) works on native
values. The calculation of the input checksum and the
comparison of the output checksum work on native values.
Because of the different representation of data between native
and encoded parts, common mode execution errors are unlikely
to falsify native and encoded part in the same way. Thus,
common mode errors will produce with a high likelihood
output values that do not match the output checksum. We
explain this argument with two different examples:

 In the first example, it shall be assumed that the error
consists of one or more bits of a register r which are
permanently stuck-at 0. First, it is likely that the
register r is used for different values in the native and
encoded parts. In this case, both parts will be
influenced differently. This is the case because a

register r has a fixed bit width. Without loss of
generality, it can be assumed that the bit width of r is
32. In the native part, a 32-bit value fits into r. In the
encoded part, only half of the encoded value fits into r.
Hence, it is very unlikely, that r falsifies both the
native value and the encoded value in a way that the
falsely encoded value matches the false native value.
Furthermore, it is also unlikely that the stuck-at 0 bits
in r produce a valid encoded value at all. For a deeper
discussion about invalidly encoded values, Section III
provides further information.

 In the second example, an execution error exchanges
the addition operation against the subtraction operation
for 32-bit values. For 32-bit values, the native part uses
the 32-bit addition. The encoded part uses a 64-bit
addition for the corresponding encoded values because
a 32-bit native value becomes a 64-bit encoded value
through encoding. Because of this fact, the faulty 32-
bit addition is unlikely to produce matching native and
encoded values in the native and encoded parts,
respectively. Furthermore, the encoded parts use
additional operations for control flow checks and for
implementing encoded operations. Due to the nature of
a common mode execution error, whenever a 32-bit
addition is executed as part of the control flow checks
or an encoded operation, this addition must turn into a
subtraction. However, this will most likely either result
in a detected control flow error or produce invalid
values as a result of the encoded operation.

In summary, this safety argument concludes that diversified
encoding detects both transient and permanent execution errors
by comparing the output checksum with output values.

C. Diversified Safe Counter

This section explains the usage of diversified encoding with
the example from Section II. The code transformation tool
generates an entry point function incSafeCounterSafe
point for the function incSafeCounter. This entry point is
part of the diversity framework generated by the code
transformation tool and it encapsulates the four tasks from
Fig. 1:

1. It generates the encoded input values from the native
input values.

2. It performs the native execution.

3. It performs the encoded execution.

4. It calculates the checksum over the encoded output.

The new entry point has the following interface:
uint32_t incSafeCounterSafe(uint32_t*
checksum, uint32_t incValue). The new entry point
has a new name, because the native entry point with the name
incSafeCounter is still used in step (3). The return value
and the parameter incValue have the same semantics as in
incSafeCounter. A caller must provide a pointer to the
checksum variable. The new entry point
incSafeCounterSafe stores the checksum over the
encoded output into this checksum variable.

To check for execution errors, e.g. when using the return
value of incSafeCounterSafe, the caller’s code must
compare the value of the variable checksum with the checksum
of the native output values. To calculate the checksum over the
native output values, the transformation tool generates a
uint32_t
SIListra_diversity_output_checksum(uint32_
t returnValue) function. The parameter returnValue
must be the return value that incSafeCounterSafe
returns. We exemplify the usage of the output checksum below
with an integration of a watch dog.

To simplify the example, a checksum over the native input
values was omitted. The following sub-section discusses an
alternative to using native input checksums.

D. Protection of Input Values

The input checksum solution can be insufficient depending
on how the input values are generated. Fig. 2 (a) illustrates, that
the checksum solution is a good fit, if all input value are
generated by the caller at nearly the same point in time.
Fig. 2 (b) shows a case were the input checksum solution is
insufficient. When one or more other components provide the
input values, the input values are unprotected, until the caller
calculates the checksum. The caller can only calculate the input
checksum when all input values are available. For example any
bit-flip happening on an input value between its generation and
the checksum calculation is not detected.

Fig. 2 (c) shows an alternative solution to determine the
integrity of input values: Inverse storage. The component that
generates an input value v stores this v into two variables. One
variable contains v as it is. The other variable contains a
bitwise negation of v. Both variables are part of the input
values of the safety function. Within the safety function, an
integrity check of both input variables has to be carried out. If
the integrity is violated, then the safety function must take an
appropriate action. Otherwise it continues to use only the
original value.

The source code below shows the implementation of the
example with inverse storage of the input value incValue.
This is the source code of the original native safety function.
The transformation tool generates the appropriate source code
of the encoded safety function.

static uint32_t safeCounter = 1;

uint32_t incSafeCounter(
uint32_t incValue,
uint32_t incValue_invers)

{
if (0xFFFFFFFF !=

(incValue ^ incValue_inverse)) {
/* for example trigger watch dog */

}
safeCounter += incValue;
return safeCounter;

}

The parameter incValue_inverse stores the inverse
input value of the parameter incValue. Using inverse storage
changes the interface of the safety function as shown above.

The transformation tool generates an entry point with the
following interface: uint32_t incSafeCounterSafe
(uint32_t* checksum, uint32_t incValue,
uint32_t incValue_inverse). Within the safety
function, inverse storage is not necessary because the
diversified encoding already protects the global variables (see
global variable safeCounter in the example).

Fig. 1. Three variants for protecting input values. Protected means, that
execution errors on the input values will be detected. Unprotected means, that
there is a time window in which execution errors on some input values cannot
be detected.

time

input values and checksum
generated by caller

caller calls
safety function

input values protected
by checksum

(a) checksums protect input values from one
component

time

input value generated by
component B

caller calls
safety function

input values protected
by checksum

(b) checksums protect input values from multiple
components insufficiently

input value generated by
component A

caller calculates
checksum

execution errors
on input values
are undetected

time

input values with invers storage
generated by component A

caller calls
safety function

input values protected by inverse storage

(c) inverse storage protect input values from
multiple component; checksum is not required

input values with invers storage
generated by component B

Fig. 2. Three variants for protecting input values. Protected means, that
execution errors on the input values will be detected. Unprotected means, that
there is a time window in which execution errors on some input values cannot
be detected.

www.embedded-world.eu

The example highlights two important properties of using
inverse storage with diversified encoding:

 This solution protects the input values and the
calculation from putting the input values into inverse
storage throughout the execution of the safety function
without a gap. Because the integrity check of the
inverse stored input value happens within the safety
function, execution errors within the check are detected
by the diversified encoding technique. The checksum
approach also protects the input values from checksum
generation throughout the execution of the safety
function. In some cases, the inverse storage solution is
more flexible than the checksum solution because a
component can put values into inverse storage without
knowing anything about the input checksum of the
safety function.

 Diversified encoding is a flexible solution that works
together with traditional approaches to detect execution
errors. A decision to use inverse storage for some or all
input values is completely independent of the decision
to use diversified encoding. Instead of inverse storage,
other solutions can be used – such as replicating input
values or having two separate input values and using a
plausibility check within the safety function.
Diversified encoding is compatible with these
solutions.

E. Integration with a Watchdog

This section shows how to integrate diversified encoding
with a challenge-response-watchdog (CRWD). A CRWD
monitors a safety system. It regularly sends challenges to the
safety system and expects a correct response within a defined
time frame. In case the response is wrong or does not arrive in
a timely manner, the CRWD initiates the appropriate safety
reaction for the system, e.g. a stop, reset, or fail-over. Such
CRWDs are state-of-the-art in the industry.

Challenges and responses are usually integer values. For
each possible challenge, the expected response has to be pre-
calculated. These expected responses are stored within the
CRWD as part of the configuration of the system.

Our goal is to show how to enable the CRWD to monitor,
that (1) the safety function is regularly executed and (2) that the
executions are free of execution errors. The source code below
shows how diversified encoding can generate a response to a
given CRWD challenge. In the following discussion, any
challenge and response shall be represented as unsigned 32-bit
integer variables. The CRWD writes the variable challenge
whenever it sends a new challenge. In addition, the CRWD
clears the variable response, e.g. by setting it to an invalid
response value. When the CRWD expects a response, it reads
the variable response and compares its value to the expected
response. In practice, the value of response can be merged
with responses from other safety functions to calculate a
unified response for the whole system.

/* constant for calculating the response for
the safe counter */
#define SAFE_COUNTER_SIG (12u)

/* stores the current watchdog challenge */
extern uint32_t challenge;
/* stores the response for the watchdog */
extern uint32_t response;

/* initialize checksum variable with unlikely
checksum value (see above) */
uint32_t checksum = 0;

/* increment the safe counter by 1 with
inverse input (see above) */
uint32_t currentCounterValue =

incSafeCounterSafe(&checksum, 1u, ~1u);
/* ... use currentCounterValue ... */

/* calculate response from challenge and
output checksum */
response = challenge + checksum +

SAFE_COUNTER_SIG –
SIListra_diversity_output_checksum(

currentCounterValue);
/* ... */

When no execution error influenced the output value
currentCounterValue, the values of checksum and
SIListra_diversity_output_checksum(current
CounterValue) are the same. Hence, the expected response
for a given challenge is challenge + SAFE_COUNTER_
SIG.

When the values of checksum and
SIListra_diversity_output_checksum(current
CounterValue) differ because of an execution error, the
value of response deviates from the expected response
value. Even when the safety function is not executed at least
once between a new challenge and its corresponding time for a
response, the variable response contains an invalid response
value. Hence, the CRWD detects whether the safety functions
is regularly executed and whether an execution error influences
the execution of the safety function.

The presented solution always overwrites the variable
response. Hence, a fault-free execution of the safety
function might mask a previous error in case the CRWD did
not check the response between these two executions. To
avoid the masking of a previous error one can extend the
solution to propagate an execution error through consecutive
executions into the response that the CRWD reads.

V. CODE TRANSFORMATION

The aforementioned code transformation tool generates
automatically the source code of the encoded program and the
source code of the diversity framework. Of course, it is
possible to write the encoded program and the diversity
framework manually. But automatic code transformation
provides the following advantages compared to manually
implementing the encoded program and the diversity
framework:

 Development speed: Changes to the original source
code of the native safety function can be quickly

adopted in the generated code. The alternative would
be a time-consuming manual reprogramming.

 Flexibility: Requirements and parameters can be
changed, elaborated, and examined very quickly. It
only requires to rerun the code transformation tool.
Without tool support, changes like enabling/disabling
control-flow checks and changing the encoding would
require a complete manual re-writing.

 Correctness and reproducibility: In most cases, a
thoroughly tested code transformation tool works more
correct than a human being. Diversified encoding
additionally reduces the risk of tool errors. In case the
code transformation tool generates source code for the
encoded safety function that does not behave as the
original source code, the output values of native and
encoded safety function do not match. Hence, the
diversified encoding per se detects any wrong output
that results from an in-correct generated encoded safety
function as execution error.

The code transformation tool works like a C compiler. It
performs the following steps:

1. Preprocessing: The tool preprocesses the complete
source code of the safety function including all
included header files. Therefore, it must be configured
with the same preprocessing defines as the C
compiler.

2. Parsing: The tool generates an abstract syntax tree
from the preprocessed source code including a
semantic analysis. For instance the abstract syntax tree
needs a complete type analysis. At this step, the tool
can detect unsupported C languages features. If the
tool does not support a language feature, it produces an
error message and aborts the transformation process.

3. Encoding: Sufficient semantic information are
available after the parsing step to encode the safety
function. The tool replaces constants, variables, and
operations with their encoded versions.

4. Code Generation: The result of the encoding step is
an intermediate result. The last step is the final C code
generation.

The current status of the tool allows to encode most C99
features. The following features are known to be supported by
a state of the art code transformation tool:

 all integer arithmetic including logical operations and
comparisons

 all control flow constructs of C99 from if-else,
including loops, function calls to break and continue
(except setjmp and longjmp)

 arrays, structs and any other pointer arithmetic

For each native C module that the tool gets as input, it
produces an output C module containing the encoded version
of the native C module. The generated C code must then be
further processed in the tool chain, typically by the C compiler.

Optimizations in the C compiler cannot remove the
encoding. The fact that all values are a multiple of an encoding
parameter A is not visible to the C compiler because the C
compiler processes each C module individually. Even with link
time optimization, which provides the optimizer the view on all
C modules at once, the optimizations cannot remove the
encoding. The optimizations would have to prove that the
whole encoded safety function is equivalent to the native safety
function, including all checksum calculations in the diversity
framework. No state-of-the-art compiler provides such
optimizations. In addition, fault injection could be used to
demonstrate that the encoding has not been removed during
compilation.

Besides encoding itself, the code transformation tool can
also generate the diversity framework. The diversity
framework consists of the source code of the functions that
calculate the native input checksum and the native output
checksum and the source code of the new entry points.

VI. DISCUSSION AND CONCLUSION

A. Scope of Detection

Diversified encoding is a probabilistic solution to detect
execution errors with a very high likelihood. It is based on
coded processing. Section III introduced the important
properties for the encoding parameter A to achieve a very high
detection probability. In terms of the ISO 26262, experiments
and analysis have shown that state-of-the-art diversified
encoding reaches a high diagnostic coverage sufficient for the
highest safety level of the ISO 26262.

Diversified encoding covers the detection of execution
errors in all calculations of the safety function, i.e. in its data
flow and in the state of the safety function (memory where the
variables of the safety function are stored). Input and output
can be covered with the solutions introduced in Section IV.D
and Section IV.E.

Timing errors, e.g. a slow execution speed or a crash of the
safety function, cannot be detected with diversified encoding
alone. Section IV.E showed how to connect a diversified
encoded safety function with a watchdog to detect and handle
such timing problems reliably.

Systematic software errors, i.e. software bugs, are not
covered by diversified encoding. The encoding technology and
the code transformation tool have no information about a
specification of a given safety function.

Direct hardware accesses, e.g. via assembler code, are
outside the scope of an automatic code transformation tool. It is
possible to integrate assembler code with the help of manual
encoding. In such cases, it can make sense to use a mix of
automatic code transformation and manual encoding.

B. Advantages of Diversified Encoding

The decision to use diversified encoding for detecting
execution errors is a design decision that impacts sensitive
parts of a system architecture and of the development process.
To get the best results, diversified encoding has to be
considered at an early stage in the development process.

www.embedded-world.eu

Diversified encoding works hardware independent. It
makes no assumptions on the hardware. The only requirement
is that there exists a standard C compiler for the target
hardware. The target hardware does not need to be certified or
developed for safety-critical systems. It is even possible to use
consumer-graded hardware together with diversified encoding
to develop a safety-critical system.

Because diversified encoding is a software solution, it is
more flexible than a hardware solution. Diversified encoding
can be restricted to the safety-critical parts of a given system
and puts no restrictions on the non-safety-critical system parts.
An automated code transformation tool further increases the
flexibility and frees development resources that can be
assigned to developing the safety function itself.

The coded processing is the base of the diversified
encoding. It is possible to use coded processing without
diversified encoding. However, diversified encoding has two
advantages over coded processing:

 Diversified encoding with AN encoding detects the
same symptoms then one can detect with the more
complex encodings ANB and ANBD without
diversified encoding. Because of their complexities,
ANB and ANBD require more computing resources
than AN with diversified encoding. In other words,
diversified encoding requires a lower amount of
computing resources than coded processing on a
comparable safety level.

 Diversified encoding detects tool errors. The code
transformation tool generates the encoded safety
function. Hence, its tool criticality is comparable to a
compiler. However, because the diversified encoding
compares the output of the native safety function with
the output of the encoded safety function, it detects any
encoding error that alters the functionality of the
encoded safety function.

Especially when using the automated code transformation
tool, the diversified encoding reduces the development effort
for the final system. In addition, the diversified encoding
makes cyclic memory checks and periodic instruction set tests
for the safety function obsolete. Inverse storage of variables
does not need to be applied to variables stored within the safety
function. By avoiding these defensive programming methods,
valuable development resources are released by the use of
coded processing and diversified encoding. And, because these
programming methods also consume system resources at
runtime, their avoidance releases hardware resources of the
safety-critical system.

In conclusion, diversified encoding with SCP solves the
problem of the unavailability of feature-rich and powerful
hardware that is certified for use in safety-critical systems.
Diversified encoding with SCP enables the use of modern
hardware that is not certified for safety-critical systems such as
many ARM CPUs. The possibility to use such modern
hardware in safety-critical systems enables the development of
a new generation of safety-critical systems that can be smart,
powerful and safe at the same time.

REFERENCES

[1] P. Forin. Vital coded microprocessor principles and application for
various transit systems. In IFA-GCCT, pages 79-84, Sept 1989.

[2] Ute Schiffel, Martin Süßkraut, Christof Fetzer. AN-Encoding Compiler:
Building Safety-Critical Systems with Commodity Hardware, In
SAFECOMP '09: Proceedings of the 28th International Conference on
Computer Safety, Reliability, and Security, Springer-Verlag, 2009.

[3] Ute Schiffel, André Schmitt, Martin Süßkraut, Christof Fetzer. ANB-
and ANBDmem-Encoding: Detecting Hardware Errors in Software, In
Computer Safety, Reliability, and Security (Erwin Schoitsch, ed.),
Springer Berlin / Heidelberg, volume 6351, 2010.

[4] IEC 61508:2010 Functional Safety of Electrical/Electronic/Programm-
able Electronic Safety-related Systems (E/E/PE). 2010.

[5] ISO 26262 Road vehicles – Functional safety. 2011.

