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Agenda

• software-based diagnosis of random hardware errors (diversified encoding)

• architecture of a generic safety application with software-based diagnosis

• generic component with software-based diagnosis

• summary
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Software-based diagnosis of random
hardware errors
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Motivation

current state of safety

▪ safety-critical applications run only on safety-
critical hardware

SIListrified safety-critical application

▪ safety in software with safety-critical hardware
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Advantages and challenges of 1-channel hardware

• no separate hardware for safety required

• no complex development of 2-channel hardware

• safety applications can run on existing 1-channel hardware together 
with non-safety applications

• safety mostly hardware independent

• better CPU performance

• simple change to new hardware generation at end-of-life-notice

• challenges

• diagnosis and handling of random hardware errors

• architecture
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Software-based diagnosis with diversified encoding
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Encoded channel

Native channel

Non-safety-critical hardware

• 2 diverse software channels
• run on same hardware
• channels functional equivalent
• encoded channel:

• uses software coded processing
• can be generated by a tool



Software coded processing

Encoded channel works with encoded code on encoded data.

▪ example: AN encoding

▪ variables, constants and operators are arithmetically encoded

▪ every variable and constant is a multiple of A: 𝑥 → 𝑥𝑒𝑛𝑐 = 𝐴 ∙ 𝑥

▪ correctness check: 𝑥𝑒𝑛𝑐mod𝐴 ≡ 0

▪ error: result is not a multiple of A

▪ encoded C-code can be automatically generated from the C-code of the native channel
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C-Code
native channel

C-Code
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Tool: SIListra Safety 
Transformer

Tool: SIListra Safety 
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C-Code
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Architecture of a generic safety application with 
software-based diagnosis
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Generic safety-critical application with software-based 
diagnosis
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Non-safety-critical hardwareNon-safety-critical hardware

Black channelBlack channel Black channelBlack channelSensorSensor ActorActor

Safety-critical software 
component

QM SW

Non-safety-critical OS



Requirements on components
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Non-safety-critical 
hardware

Non-safety-critical 
hardware

Black channelBlack channel

SensorSensor

ActorActor

Safety-critical 
software component

• should be intrinsically safe
• other concepts possible

• must be intrinsically safe
• must safely detect and handle all 

failures of the black channel

• 1-channel hardware that 
runs the safety functions

• safety-critical communication 
protocol

• diagnoses random errors 
with diversified encoding

• native channel must be 
developed following an 
appropriate safety process



Generic component with software-based diagnosis
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Architecture of the safety-critical SW component

SIListra Systems 12

Safety-critical SW component

Non-cyclic 
function

Protocol stack(s) of black 
channel(s)

cyclic 
function

Other sub-components



Architecture of the safety-critical SW component

SIListra Systems 12

Safety-critical SW component

Non-cyclic 
function

Protocol stack(s) of black 
channel(s)

cyclic 
function

Other sub-components

e.g., initialization



Architecture of the safety-critical SW component

SIListra Systems 12

Safety-critical SW component

Non-cyclic 
function

Protocol stack(s) of black 
channel(s)

cyclic 
function

Other sub-components

e.g., initialization

for inputs and 
outputs (different 

protocols are 
possible)



Architecture of the safety-critical SW component

SIListra Systems 12

Safety-critical SW component

Non-cyclic 
function

Protocol stack(s) of black 
channel(s)

cyclic 
function

Other sub-components

e.g., initialization

for inputs and 
outputs (different 

protocols are 
possible)

e.g., common 
sub-components 

used by non-cyclic 
and cyclic 
functions



Architecture of the safety-critical SW component
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Safety-critical SW component

Non-cyclic 
function

Protocol stack(s) of black 
channel(s)

cyclic 
function

Other sub-components

see next slidese.g., initialization

for inputs and 
outputs (different 

protocols are 
possible)

e.g., common 
sub-components 

used by non-cyclic 
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functions



Runtime view of the cyclic function for one cycle
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Input stage: transition from 1 channel to 2 channels

• input stage itself does not check the input packet

• check must be done in 2-channel code in the diverse processing stage

• encoding of the input packet does not need to know the packet structure 
or the protocol

• encoding can be done byte-by-byte
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Diverse processing stage

• channels are independent of each other and can run in parallel or sequentially

• the diverse processing stage must check each input packet in both channels

• diagnosed errors must be propagated to the output packet on application level

• encoded channel computes:

• encoded complete output packet

• uses a dynamically calculated control-flow signature to check for control-flow 
errors

• native channel computes incomplete output packet (e.g. without checksum)

• only the channel merge will compute the final complete output packet
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diverse processing 
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Output stage: transition from 2 channels to 1 channel

• only the merge computes the final output packet

• every diagnosed error must be propagated as channel error:

• if diverse processing stage computes invalid output
• e.g., because of invalid input packet

• if random error was diagnosed
• encoded output packet and native output packet to not match

• encoded output packet not validly encoded

• control-flow error diagnosed in encoded channel
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Channel merge using a checksum
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Channel merge using a checksum
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Channel merge using a checksum
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(Partial) error analysis
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Error Diagnosis Handling

on application level application must compute invalid output packet actor detects and handles fault as 
channel failure

data-flow error in one 
channel

CRC‘ from encoded channel will not match the 
packet data computed by the native channel

actor detects and handles fault as 
channel failure

data-flow error in both 
channels

because of diversity: CRC‘ of encoded channel will 
not match  the packet data computed by the native 
channel & CRC‘ invalid encoded

actor detects and handles fault as 
channel failure

control-flow error CFC falsified → CRC falsified actor detects and handles fault as 
channel failure

cycle not executed no output packet generated actor detects and handles 
timeout as channel failure



Advanced topics: initialization & clocks
Initialization

• example for a non-cyclic function

• store result of initialization in a global variable

• cyclic function must check this global variable in 
every cycle in both channels

• error = application level error

• error propagation
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Advanced topics: initialization & clocks
Initialization

• example for a non-cyclic function

• store result of initialization in a global variable

• cyclic function must check this global variable in 
every cycle in both channels

• error = application level error

• error propagation

Time as input

• local clock alone is not safe

• safe clock or second redundant clock required

• time value must be checked by both channels:

• error = application level error
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Summary
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• sensors and actors do not need to know diversified encoding or
coded processing

• connection via safe protocols
• industry standards (e.g. PROFIsafe, CANopen safety, …)
• proprietary protocols

InteroparabilityInteroparability

• diagnosed errors are propagated as channel errorMain IdeaMain Idea

• diversified encoding & coded processing enables diagnosis
of random errors on 1-channel hardware

• safety-critical applications can run on the same HW
as non-safety-critical applications

Safety in 
Software
Safety in 
Software


