
INTEROPERABILITY OF DIVERSIFIED ENCODING
Dr. Martin Süßkraut – Dr. Andreas Ecke – Mario Schwalbe

18.06.2021

1

Stay silistrifiedsilistra-systems.com

Agenda

• software-based diagnosis of random hardware errors (diversified encoding)

• architecture of a generic safety application with software-based diagnosis

• generic component with software-based diagnosis

• summary

SIListra Systems 2

Software-based diagnosis of random
hardware errors

SIListra Systems 3

Motivation

current state of safety

▪ safety-critical applications run only on safety-
critical hardware

SIListrified safety-critical application

▪ safety in software with safety-critical hardware

SIListra Systems 4

Advantages and challenges of 1-channel hardware

• no separate hardware for safety required

• no complex development of 2-channel hardware

• safety applications can run on existing 1-channel hardware together
with non-safety applications

• safety mostly hardware independent

• better CPU performance

• simple change to new hardware generation at end-of-life-notice

• challenges

• diagnosis and handling of random hardware errors

• architecture

SIListra Systems 5

Software-based diagnosis with diversified encoding

SIListra Systems 6

Encoded channel

Native channel

Non-safety-critical hardware

• 2 diverse software channels
• run on same hardware
• channels functional equivalent
• encoded channel:

• uses software coded processing
• can be generated by a tool

Software coded processing

Encoded channel works with encoded code on encoded data.

▪ example: AN encoding

▪ variables, constants and operators are arithmetically encoded

▪ every variable and constant is a multiple of A: 𝑥 → 𝑥𝑒𝑛𝑐 = 𝐴 ∙ 𝑥

▪ correctness check: 𝑥𝑒𝑛𝑐mod𝐴 ≡ 0

▪ error: result is not a multiple of A

▪ encoded C-code can be automatically generated from the C-code of the native channel

SIListra Systems 7

C-Code
native channel

C-Code
native channel

Tool: SIListra Safety
Transformer

Tool: SIListra Safety
Transformer

C-Code
encoded channel

C-Code
encoded channel

Architecture of a generic safety application with
software-based diagnosis

SIListra Systems 8

Generic safety-critical application with software-based
diagnosis

SIListra Systems 9

Non-safety-critical hardwareNon-safety-critical hardware

Black channelBlack channel Black channelBlack channelSensorSensor ActorActor

Safety-critical software
component

QM SW

Non-safety-critical OS

Requirements on components

SIListra Systems 10

Non-safety-critical
hardware

Non-safety-critical
hardware

Black channelBlack channel

SensorSensor

ActorActor

Safety-critical
software component

• should be intrinsically safe
• other concepts possible

• must be intrinsically safe
• must safely detect and handle all

failures of the black channel

• 1-channel hardware that
runs the safety functions

• safety-critical communication
protocol

• diagnoses random errors
with diversified encoding

• native channel must be
developed following an
appropriate safety process

Generic component with software-based diagnosis

SIListra Systems 11

Architecture of the safety-critical SW component

SIListra Systems 12

Safety-critical SW component

Non-cyclic
function

Protocol stack(s) of black
channel(s)

cyclic
function

Other sub-components

Architecture of the safety-critical SW component

SIListra Systems 12

Safety-critical SW component

Non-cyclic
function

Protocol stack(s) of black
channel(s)

cyclic
function

Other sub-components

e.g., initialization

Architecture of the safety-critical SW component

SIListra Systems 12

Safety-critical SW component

Non-cyclic
function

Protocol stack(s) of black
channel(s)

cyclic
function

Other sub-components

e.g., initialization

for inputs and
outputs (different

protocols are
possible)

Architecture of the safety-critical SW component

SIListra Systems 12

Safety-critical SW component

Non-cyclic
function

Protocol stack(s) of black
channel(s)

cyclic
function

Other sub-components

e.g., initialization

for inputs and
outputs (different

protocols are
possible)

e.g., common
sub-components

used by non-cyclic
and cyclic
functions

Architecture of the safety-critical SW component

SIListra Systems 12

Safety-critical SW component

Non-cyclic
function

Protocol stack(s) of black
channel(s)

cyclic
function

Other sub-components

see next slidese.g., initialization

for inputs and
outputs (different

protocols are
possible)

e.g., common
sub-components

used by non-cyclic
and cyclic
functions

Runtime view of the cyclic function for one cycle

SIListra Systems 13

input stage
diverse processing

stage output stage

Encoded input
packet

Native input
packet

Input socket

Encoded
channel

Native channel

Encoded output
packet

Native output
packet

Output socketChannel merge

Input stage: transition from 1 channel to 2 channels

• input stage itself does not check the input packet

• check must be done in 2-channel code in the diverse processing stage

• encoding of the input packet does not need to know the packet structure
or the protocol

• encoding can be done byte-by-byte

SIListra Systems 14

Encoded input
packet

Native
input packet

Input socket

En
co

d
in

g

input stage

Diverse processing stage

• channels are independent of each other and can run in parallel or sequentially

• the diverse processing stage must check each input packet in both channels

• diagnosed errors must be propagated to the output packet on application level

• encoded channel computes:

• encoded complete output packet

• uses a dynamically calculated control-flow signature to check for control-flow
errors

• native channel computes incomplete output packet (e.g. without checksum)

• only the channel merge will compute the final complete output packet

SIListra Systems 15

diverse processing
stage

Encoded
channel

Native channel

Output stage: transition from 2 channels to 1 channel

• only the merge computes the final output packet

• every diagnosed error must be propagated as channel error:

• if diverse processing stage computes invalid output
• e.g., because of invalid input packet

• if random error was diagnosed
• encoded output packet and native output packet to not match

• encoded output packet not validly encoded

• control-flow error diagnosed in encoded channel

SIListra Systems 16

output stage

Encoded output
packet

Native output
packet

Output socketChannel merge

Channel merge using a checksum

SIListra Systems 17

Encoded output
packet

Native output packet

Encoded
channel

CRC‘
Meta
Data

User
Data

CRC
Meta
Data

User
Data

Channel mergeCFC CRC
Meta
Data

User
Data Output socket

Native channel

CFC = control-flow check signature
CRC = checksum

Channel merge using a checksum

SIListra Systems 17

Encoded output
packet

Native output packet

Encoded
channel

CRC‘
Meta
Data

User
Data

CRC
Meta
Data

User
Data

Channel mergeCFC CRC
Meta
Data

User
Data Output socket

CRC = -CFC + CFC + decode(CRC‘)

Native channel

CFC = control-flow check signature
CRC = checksum

Channel merge using a checksum

SIListra Systems 17

Encoded output
packet

Native output packet

Encoded
channel

CRC‘
Meta
Data

User
Data

CRC
Meta
Data

User
Data

Channel mergeCFC CRC
Meta
Data

User
Data Output socket

CRC = -CFC + CFC + decode(CRC‘)

Known at
compile timeNative channel

CFC = control-flow check signature
CRC = checksum

Channel merge using a checksum

SIListra Systems 17

Encoded output
packet

Native output packet

Encoded
channel

CRC‘
Meta
Data

User
Data

CRC
Meta
Data

User
Data

Channel mergeCFC CRC
Meta
Data

User
Data Output socket

CRC = -CFC + CFC + decode(CRC‘)

Known at
runtime

Known at
compile timeNative channel

CFC = control-flow check signature
CRC = checksum

(Partial) error analysis

SIListra Systems 18

Error Diagnosis Handling

on application level application must compute invalid output packet actor detects and handles fault as
channel failure

data-flow error in one
channel

CRC‘ from encoded channel will not match the
packet data computed by the native channel

actor detects and handles fault as
channel failure

data-flow error in both
channels

because of diversity: CRC‘ of encoded channel will
not match the packet data computed by the native
channel & CRC‘ invalid encoded

actor detects and handles fault as
channel failure

control-flow error CFC falsified → CRC falsified actor detects and handles fault as
channel failure

cycle not executed no output packet generated actor detects and handles
timeout as channel failure

Advanced topics: initialization & clocks
Initialization

• example for a non-cyclic function

• store result of initialization in a global variable

• cyclic function must check this global variable in
every cycle in both channels

• error = application level error

• error propagation

SIListra Systems

19

Non-cyclic
function

Cyclic
function

ActorActor

19

Advanced topics: initialization & clocks
Initialization

• example for a non-cyclic function

• store result of initialization in a global variable

• cyclic function must check this global variable in
every cycle in both channels

• error = application level error

• error propagation

Time as input

• local clock alone is not safe

• safe clock or second redundant clock required

• time value must be checked by both channels:

• error = application level error

SIListra Systems

19

Non-cyclic
function

Cyclic
function

ActorActor

Encoded time
value(s)

Native time
value(s)

Safe or
redundant

clock(s)

Encoded
channel:

Checks time
value(s) e

Native channel:
Checks time

value(s)

En
co

d
in

g

19

Summary

SIListra Systems 20

• sensors and actors do not need to know diversified encoding or
coded processing

• connection via safe protocols
• industry standards (e.g. PROFIsafe, CANopen safety, …)
• proprietary protocols

InteroparabilityInteroparability

• diagnosed errors are propagated as channel errorMain IdeaMain Idea

• diversified encoding & coded processing enables diagnosis
of random errors on 1-channel hardware

• safety-critical applications can run on the same HW
as non-safety-critical applications

Safety in
Software
Safety in
Software

