

INTEROPERABILITY OF DIVERSIFIED ENCODING <u>Dr. Martin Süßkraut</u> – Dr. Andreas Ecke – Mario Schwalbe

silistra-systems.com Stay silistrified

Agenda

- software-based diagnosis of random hardware errors (diversified encoding)
- architecture of a generic safety application with software-based diagnosis
- generic component with software-based diagnosis
- summary

Software-based diagnosis of random hardware errors

Motivation

current state of safety

 safety-critical applications run only on safetycritical hardware

SIListrified safety-critical application

safety in software with safety-critical hardware

Advantages and challenges of 1-channel hardware

no separate hardware for safety required

- no complex development of 2-channel hardware
- safety applications can run on existing 1-channel hardware together with non-safety applications

safety mostly hardware independent

- better CPU performance
- simple change to new hardware generation at end-of-life-notice

challenges

- diagnosis and handling of random hardware errors
- architecture

Software-based diagnosis with diversified encoding

Native channel

Non-safety-critical hardware

- 2 <u>diverse</u> software channels
 - run on <u>same</u> hardware
 - channels functional equivalent
 - encoded channel:
 - uses software coded processing
 - can be generated by a tool

Software coded processing

Encoded channel works with encoded code on encoded data.

- example: AN encoding
 - variables, constants and operators are arithmetically encoded
 - every variable and constant is a multiple of A: $x \to x_{enc} = A \cdot x$
 - correctness check: $x_{enc} \mod A \equiv 0$
 - error: result is <u>not</u> a multiple of A
- encoded C-code can be automatically generated from the C-code of the native channel

Architecture of a generic safety application with software-based diagnosis

Generic safety-critical application with software-based diagnosis

Requirements on components

Sensor

- should be intrinsically safe
- other concepts possible

Actor

- must be intrinsically safe
- must safely detect and handle all failures of the black channel

safety-critical communication protocol

Non-safety-critical hardware

software component

1-channel hardware that runs the safety functions

Safety-critical

- diagnoses random errors with diversified encoding
- native channel must be developed following an appropriate safety process

Generic component with software-based diagnosis

Runtime view of the cyclic function for one cycle

Input stage: transition from 1 channel to 2 channels

input stage **Encoded input** packet Input socket **Native** input packet

- input stage itself does not check the input packet
 - check must be done in <u>2-channel</u> code in the diverse processing stage
- encoding of the input packet does not need to know the packet structure or the protocol
 - encoding can be done byte-by-byte

Diverse processing stage

diverse processing stage

Encoded channel

- channels are independent of each other and can run in parallel or sequentially
- the diverse processing stage <u>must</u> check each input packet in both channels
 - diagnosed errors must be propagated to the output packet on application level
- encoded channel computes:
 - encoded complete output packet
 - uses a dynamically calculated control-flow signature to check for control-flow errors
- native channel computes incomplete output packet (e.g. without checksum)
- only the channel merge will compute the final complete output packet

Native channel

Output stage: transition from 2 channels to 1 channel

output stage

- only the merge computes the final output packet
- every diagnosed error must be propagated as channel error:
 - if diverse processing stage computes invalid output
 - e.g., because of invalid input packet
 - if random error was diagnosed
 - encoded output packet and native output packet to not match
 - encoded output packet not validly encoded
 - control-flow error diagnosed in encoded channel

CFC = control-flow check signature

CRC = checksum

CFC = control-flow check signature

CRC = checksum

CFC = control-flow check signature

CRC = checksum

CFC = control-flow check signature

CRC = checksum

(Partial) error analysis

Error	Diagnosis	Handling
on application level	application must compute invalid output packet	actor detects and handles fault as channel failure
data-flow error in one channel	CRC' from encoded channel will not match the packet data computed by the native channel	actor detects and handles fault as channel failure
data-flow error in both channels	because of diversity: CRC' of encoded channel will not match the packet data computed by the native channel & CRC' invalid encoded	actor detects and handles fault as channel failure
control-flow error	CFC falsified → CRC falsified	actor detects and handles fault as channel failure
cycle not executed	no output packet generated	actor detects and handles timeout as channel failure

Advanced topics: initialization & clocks

Initialization

- example for a non-cyclic function
- store result of initialization in a global variable
- cyclic function must check this global variable in every cycle in both channels
 - error = application level error
- error propagation

Advanced topics: initialization & clocks

Initialization

- example for a non-cyclic function
- store result of initialization in a global variable
- cyclic function must check this global variable in every cycle in both channels
 - error = application level error
- error propagation

Time as input

- local clock alone is not safe
- safe clock or second redundant clock required
- time value must be checked by both channels:

Summary

Interoparability

- sensors and actors do <u>not</u> need to know diversified encoding or coded processing
- connection via safe protocols
 - industry standards (e.g. PROFIsafe, CANopen safety, ...)
 - proprietary protocols

Main Idea

diagnosed errors are propagated as channel error

Safety in Software

- diversified encoding & coded processing enables diagnosis of random errors on 1-channel hardware
- safety-critical applications can run on the same HW as non-safety-critical applications