
Is Software Coded Processing an Answer to
the Execution Integrity Challenge of Current
and Future Automotive Software-Intensive

Applications?

Majdi Ghadhab, Jörg Kaienburg, Martin Süßkraut, and Christof Fetzer

BMW AG, majdi.el.ghadhab@bmw.de; SIListra Systems GmbH, joerg.kaienburg@silistra-

systems.com, martin.suesskraut@silistra-systems.com; Technische Universität Dresden,

christof.fetzer@tu-dresden.de

Abstract

In upcoming automotive systems, the high integration of safety-critical software

and the use of high-performance controllers with limited integrity is a demanding

challenge. Innovations like driving automation require significantly higher compu-

tational power than it is available via special-purpose controllers equipped with

safety features. The qualification high-performance commodity hardware for a use

in safety-critical systems becomes desirable. To cope with the dilemma of low in-

tegrity of such controllers, Software Coded Processing reliably shifts the detection

of execution errors into the application software allowing high diagnostic coverage

of processing units’ failures.

1 Introduction

The increasing extent and autonomy of software-driven E/E systems accentuates

the necessity to guarantee their correct functioning. ISO 26262 defines functional

safety as the “absence of unreasonable risk due to hazards caused by malfunctioning

behavior of E/E systems” [1]. Embedded controllers represent the central part of

such E/E systems. Strict safety requirements have to be fulfilled during their lifecy-

cle.

In this paper, we first present current trends of automotive applications and their

impacts on embedded computing. Next, we highlight the contradicting requirements

of high performance versus high safety integrity versus cost efficiency. While reli-

able systems typically employ established hardware techniques to detect random

faults of processing units, we focus on lower-cost and more flexible software im-

mailto:majdi.el.ghadhab@bmw.de
mailto:joerg.kaienburg@silistra-systems.com
mailto:joerg.kaienburg@silistra-systems.com
mailto:martin.suesskraut@silistra-systems.com
mailto:christof.fetzer@tu-dresden.de

2

plemented fault detection mechanisms to enhance powerful general-purpose con-

troller. We propose to apply Software Coded Processing (SCP) as it reliably ad-

dresses systematic and random, both permanent and transient, hardware failures.

The last section explains the working principle of SCP, its underlying assumptions,

the failure model, and the way how this technique can be deployed in a day-to-day

development environment. Finally, we present experimental results with focus on

utilizing Commercial-Off-The-Shelf (COTS) controllers and trade off achievable

detection rates against performance implications.

2 Future Automotive Software-Intensive Systems

Future vehicles are seen as a connected and distributed network of complex soft-

ware systems. Visions of a future intelligent networking of driver, vehicle, and en-

vironment, e. g. in the context of BMW ConnectedDrive [2], require new ap-

proaches for architectures of control unit platforms and their interfaces within the

overall systems [3].

 Centralized Domain-Controlled Architecture

The trend of continuously integrating and networking additional ECUs is getting

strongly restricted by communication, power consumption, space, and cabling. It

becomes essential to shift in-car-networking complexity into software and to inte-

grate more functions per computing unit [4]. Large Scale Software Integration

(LSSI) and domain controllers are introduced in [5]. An LSSI system centralizes

several high integrity vehicle software components onto a single ECU. Domain con-

trollers are capable integration platforms and server ECUs which control several

bus systems [4]. Relocating the rising software workload to domain-controllers re-

quires more performance and accentuates safety integrity aspects.

 Driving Automation

Advanced driver assistance systems moving towards fully automated driving need

data from the core vehicle network and the evolving sensor and communications

technologies [6]. The central computing platform executes data intensive functions

and complex algorithms for environment perception, maneuver planning, and mo-

tion control.

In order to cope with the trends of software-intensive systems, design engineers

of embedded computers have to fulfill following requirements with respect to cost-

efficiency:

 High-Performance Computing

Research projects for autonomous driving and robotics use modern personal com-

puters to its full capacity to process the required software-intensive functions. This

implies memory consumption in the range of Gigabytes, CPU consumption in the

range of GFLOPS, and utilization of hardware acceleration [7].

 Dependable Computing

A platform shall provide computing capabilities with guaranteed timing, reliability,

and integrity. Control functions have real-time constraints, must satisfy functional

3

safety requirements such as handling of hardware and software faults in a fail-safe

and increasingly fail-operational manner.

Other design criteria, e. g. scalability, are also gaining high importance. They are

not discussed in this paper as we focus on the challenge of performance and de-

pendability.

3 The Challenge of High-Performance, Dependable, and

Cost-Efficient Computing

Intended computing platforms require both high performance and high integrity.

Available processors on the market have either high performance or high integrity.

[8] and [9] provide examples of recent automotive high-integrity controllers. Com-

munication with various hardware vendors proved the lack of high-integrity pro-

cessing hardware providing the computing performance as required by future soft-

ware-intensive applications [7].

Typically, architecture trends from desktop, laptop and server computing migrate

into embedded microcontroller applications [10]. High volume standard processors

have significantly better cost per performance than special-purpose ones. Table 1

lists price and performance values of popular CPUs and SoCs. Freescale’s

MPC5643L [8] microcontroller, designed for automotive safety-critical ECUs, is

taken as a reference. Performance values are quotes from the respective technical

specification documents.

 Table 1. Performance per price for selected CPUs [11]

Vendor Model CPU Price/$ DMIPS DMIPS/$

Freescale MPC5643L Power PC

Lockstep

15 250 16.6

Freescale MCIMX6U5

DVM10AB

ARM

Cortex-A9

26 2500 96.2

Texas

Instruments

66AK2H12 ARM

Cortex-A15

250 19660 78.4

Intel Atom N270 n/a 32 3,846 120.2

Intel i7 4770k n/a 339 124,850 368.3

AMD FX-8350 n/a 180 97,125 539.6

The values as of Table 1 indicate that the performance per price can be a magni-

tude higher for commodity hardware than for automotive-specialized ones. Other

parameters like power consumption, failure modes and distribution, product avail-

ability, and operational limitations play also an important role when evaluating

CPUs regarding their suitability for automotive application. Nevertheless, the per-

4

formance per price motivates the investigation of such processors in order to pro-

vide economically priced computing power. A significant difficulty is the circum-

stance that these controllers are not self-checking and have limited fault detection

capabilities. The functional safety of embedded controller includes the safety integ-

rity of the application software and the computing platform. The integrity of the

computing platform is typically ensured through self-checks and hardware redun-

dancy. We use the term “execution integrity” to refer to the detection and handling

of systematic, permanent, and transient hardware failures and interference leading

to safety goal violations of an executed application.

ISO 26262 lists in Annex D of Part 5 safety measures and mechanisms with high

diagnostic coverages which are considered as achievable for processing units. These

measures include hardware and/or software implemented fault detection.

The most straightforward way to duplicate and compare a microprocessor is the

technique of a lockstep [12]. Each processor is expected to produce the same outputs

given the same inputs. Unfortunately, lockstep-microprocessors double the compu-

ting cycle budget while providing just the same performance as single processing.

And they are susceptible to non-determinisms. A number of mechanisms in current

CPUs increase non-determinism and might disconnect lockstep CPUs of recent de-

velopments [13].

Additional to the potential limitations of hardware-implemented fault detection,

relying on general-purpose processors requires safety measures without changes to

the hardware architecture. Therefore, we propose to investigate software-imple-

mented and hardware-independent fault detection for future automotive safety-crit-

ical systems. To achieve high diagnostic coverages by software-implemented fault

detection, we consider software diversified redundancy, recommended by

ISO 26262, and introduce an alternative approach based on Software Coded Pro-

cessing.

 Software Diversified Redundancy

The design consists

of two redundant and

diverse software im-

plementations in one

hardware channel [1].

The redundant path is

often implemented

using separate algo-

rithm designs and

code to provide soft-

ware diversity. The

design must include

methods to coordi-

nate these two paths

and to resynchronize the paths for transient errors. Due to potential common cause

failures, an additional watchdog processor can be used and a detailed analysis is

required to prove the diagnostic coverage.

Fig. 1. Software Diversified Redundancy - architecture

http://dict.leo.org/ende/index_de.html#/search=economically&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=priced&searchLoc=0&resultOrder=basic&multiwordShowSingle=on

5

 Software Coded Processing

SCP extends the functional code by the ability to detect whether it is correctly exe-

cuted by its underlying hardware or not. SCP detects transient, permanent, and sys-

tematic hardware execution errors with high detection rates. Due to potential com-

mon cause failures, the checking of the output validity is performed by an external

unit, e. g. a watchdog. SCP permits the efficient execution of non-critical applica-

tions and the correct execution of critical applications [14].

Table 2. Software-implemented fault detection techniques

Mechanism Pro Con

Software

Diversified

Redundancy

Allows detection of soft-

ware faults

Requires diverse software

implementations

Requires a detailed analysis

to prove independence and

diagnostic coverage

Software

Coded

Processing

Detects systematic and

random hardware failures

Diagnostic coverage can

be flexibly configured

Detects interference fail-

ures between critical and

non-critical software

Needs evaluation of perfor-

mance requirements

Requires detailed analysis of

dependent and common

cause failures

Table 2 highlights the main difference between software diversified redundancy

and Software Coded Processing. Software diversified redundancy requires two

(time and effort consuming) implementations, whereas Software Coded Processing

requires only one implementation. Considering the achievable diagnostic coverage

at lower development cost, SCP deserves further investigation to evaluate its imple-

mentation process, detection rates, and performance implications.

4 Software Coded Processing

Software Coded Processing (SCP) is a software technique. The fundamental prin-

ciple of SCP is the arithmetic encoding of variables, constants, and operations. The

result is an end-to-end protection which is hardware independent and continuously

present.

4.1 Execution Errors and Error Model

Execution errors affect the execution integrity of embedded systems’ functioning.

In this paper, execution integrity is split into hardware execution errors and software

6

execution errors. A hardware execution error is an error that appears in the hard-

ware, e. g. in a processor or in the memory, which potentially affects the execution

of the software that is run by this hardware. This could result in a malfunction even

if the software is an absolutely correct program (Fig. 2).

Besides hardware execution er-

rors, interference can cause as well

erroneous behavior of a given sys-

tem. This kind of a software execu-

tion error results from an unin-

tended interaction between two

different programs whereas one

could be the operating system, firm-

or middleware, or another kind of

software. A prominent example of

interference is faulty data in

memory caused by a faulty write ac-

cess to a memory region which is

supposed to be used only by a given

safety-critical application.

Execution errors can influence three aspects of an execution: the data flow, the

control flow, and the timing. The data flow is the data stored in a system together

with all calculations (arithmetic, comparison, etc.) that a safety function performs

on this data. The control flow are all decisions that a safety function contains (loops,

function calls, etc.). The timing is the timely execution of the safety function. Exe-

cution errors can interfere with the timing by making the execution too slow or by

stopping the execution completely.

Execution errors are distinguished into transient, permanent, and systematic er-

rors. One prominent example for transient errors are bit flips which could occur in

memory, processors, and in bus signals. The characteristic property of transient er-

rors is their randomized occurrence and that they are of very short appearance. A

permanent error is an error which appears – maybe only after a distinct period of

time – and remains, i. e. it becomes a permanently present error. Hardware aging is

one possible reason for permanent errors because it materializes in an irreversible

alteration of the electrical behavior of an electronic component. Systematic errors

are permanent errors which inherently reside in a given product, e. g. caused by a

design error during the development of such a product. Thus, systematic errors ap-

pear equally in all products from one development stage.

SCP is capable to detect transient, permanent, systematic errors and errors caused

by interference once they propagate into the execution of the software. Errors which

do not propagate will not be detected since they have no effect on the execution of

the software.

Fig. 2: Execution errors harming a correct program

7

4.2 Arithmetic Encoding

SCP adds information redundancy to a software program to enable it to detect exe-

cution errors. The operating principle of SCP is based on a code transformation

during which variables, constants, and operations are arithmetically encoded. This

code transformation can be realized either manually or via a software development

tool SIListra Safety Transformer that works like a compiler and carries out the code

transformation in an affordable time.

One part of the generalized procedure of developing an embedded system is writ-

ing the functional code. This functional code determines the behavior of the final

system. After this functional code is written, it gets compiled and uploaded onto the

system. In order to deploy SCP, one additional step is needed: The functional code

has to be transformed from its original version into a new version which then con-

tains the arithmetical encoding. As a result, a new program code is generated which

still contains the original behavior and, in addition, intrinsically carries the protec-

tion via SCP. This new code, functionality-wise identical and SCP-protected, must

be compiled instead of the original functional code. As a result, a different binary

file is created that has to be uploaded onto the embedded system. Having done that,

the systems’ function remains identical compared to its origin plus it becomes seam-

lessly and intrinsically protected and safe due to the presence of SCP. Furthermore,

safety is achieved independent of the used hardware. By deploying SCP, also COTS

hardware can be used in safety-critical applications.

SCP itself is not limited to one kind of arithmetic encoding. There are different

encodings which are providing different degrees of protection. The most known

encoding is the AN encoding [15]. The basic principle of this encoding is based on

the multiplication of any value with a constant A and, to validate the correctness of

calculations or results, the check whether a result is still a multiple of this constant

A. Values that are not multiples of A are considered as invalid. With SCP, all oper-

ations in a program must work with these encoded values. An execution error pro-

duces invalid values.

As an example, the numbers 2 and 3 shall be added in the original program code.

The expected result is 5. If protected by AN encoding with A=7, the sum 2+3 turns

into 14+21. Without an execution error, the result is 35 and a valid value because it

is a multiple of 7.

4.3 Diversified Encoding

SCP can be deployed in different ways during product development. A lean ap-

proach is the Diversified Encoding based on the AN encoding [16]. Fig. 3 depicts

the block diagram of Diversified Encoding.

8

Fig. 3: Diversified Encoding - block diagram

Diversified Encoding is based on two distinct executions of the same safety func-

tion on one channel. These two executions are the native execution and its corre-

sponding encoded execution.

 Native Execution

The native execution is the result of the original source code of the safety-critical

function. This source code operates on the native input values and native states. The

native execution changes only native states. The result of the native execution is the

native output.

 Encoded Execution

The encoded execution is based on the encoded variant of the safety-critical func-

tion. The encoded execution operates on encoded input values and on encoded

states. It produces an encoded output.

Both executions are completely distinct computations but operate on the same

values. The encoded input values are the encoded variants of the native input values.

The source code of the original, native code is used to generate the encoded source

code thereof.

The data flow starts at step (1) with the native input values. The native input

values are encoded to become the input values for step (2). In this step, the encoded

function is computed. It reads the encoded input values and the encoded internal

state. It performs its calculations, updates the encoded internal state, and produces

the encoded output values. In step (3), the native function is executed. It reads the

native input values and the native internal state. It updates the native internal state

and produces the native output values. The checksum of the native output values

and the checksum of the encoded output values are computed in step (4). If both

checksums are identical, the calculation of the native data flow is considered as

correct. The native output values are taken for the subsequent data processing.

9

4.4 Experimental Results

Since COTS hardware is experi-

encing higher attention even for

safety-critical automotive appli-

cations, respective investiga-

tions were carried out. A test

software was run on different

COTS hardware. The symptoms

of execution errors were in-

jected into the test software dur-

ing run-time, i. e. while the test

software was executed on the

different COTS hardware. The

failure injection was done by the

injection tool SIListra Safety

Evaluator [17].

Fig. 4 visualizes the results

from an experiment that was run

on a PC with an Intel i7 proces-

sor. The test software consisted

of three parts: input, an interpo-

lation of characteristics1, and

output. The interpolation part

was defined as safety-critical

and, thus, was subject to the fail-

ure injection after it was pro-

tected via SCP (AN encoding

with Diversified Encoding). A

grand total of over 300.000.000

failure symptoms were injected

and analyzed. The results were

categorized into:

 Correct executions:

The injected failures did not fal-

sify the execution and results of

the test software.

 Incorrect executions,

detected: The injected failures falsified the results and SCP detected the falsifica-

tion. Cases when the test software was aborted were also counted in this category.

 Incorrect executions, undetected: The injected failures falsified the results

but SCP did not detect the falsification.

1 German: Kennfeldinterpolation

Fig. 4: Diversified Encoding - experimental results

Fig. 5: New encoding - experimental results

10

Only 0.002 % of the injected failure symptoms were not detected. In other words,

99.998 % of the injected errors were either detected or had no impact on the cor-

rectness of the executions.

Next, an equivalent experiment was carried out which made use of a new kind

of encoding (Fig. 5). Diversified Encoding was not used in this experiment. Instead,

only this new kind of encoding was used. As a goal, it was targeted to have less than

1 % of undetected failures while requesting a minimum performance adder to the

system. The test software was replaced by Bubble Sort and CRC as test programs

for memory-intensive load and CPU-intensive load. Fig. 5 shows the results of this

experiment. Although not fully optimized yet, this new encoding provides as well

rates of “undetected” in the range below 1 %: 0.88 % for Bubble Sort and 0.24 %

for CRC (both with control flow check, CFC). The slight reduction in the ratio of

undetected execution errors – in absolute figures still on ASIL D levels – results

from the circumstance that this new encoding does not use the Diversified Encoding

(Fig. 4 vs. Fig. 5).

Table 3. Investigated COTS hardware - performance and resources

 ARM v6k

(Raspb. PI)

ARM

Cortex-A7

AMD

E-450

Core i7

3720QM

Architecture ARM ARM INTEL INTEL

Bit width 32 32 64 64

CPU clock

/ GHz
0.7 1.0 1.65 2.6

Memory clock

/ GHz
not available not available 0.508 0.65

The evaluation of the performance requirements of this new encoding was car-

ried out on different hardware platforms allowing to derive indications which de-

tection rates could be achieved with which performance requirements. Because

Fig. 6: New encoding - performance requirements

11

ARM and INTEL architectures currently gain interest in the trend towards COTS

hardware in safety-critical applications, two 32 bit ARM and two 64 bit INTEL

architectures were selected. Table 3 tabulates the main characteristic properties of

the investigated COTS hardware platforms.

Fig. 6 visualizes the performance requirements. All values were normalized to

the performance required without SCP. No overall rule-of-thumb number can be

derived to quantify the performance requirements. The extent of the required per-

formance depends on different parameters which can differ from case to case. The

explicit composition of the native code and the used processor architecture influ-

ence significantly the resulting performance requirements. Since 32 bit code trans-

forms into 64 bit code via SCP, 32 bit processors require extra performance for the

processing of 64 bit (encoded values). The result that the control flow check (CFC)

requires performance while it provides additional protection is known.

Bottom line, SCP improves the safety of systems it has been deployed to. It de-

tects execution errors with high detection rates allowing to be used in ASIL D ap-

plications. As a pure software technique, SCP is independent of the underlying hard-

ware and provides a continuous protection against execution errors. Thus, SCP is

an ideal technique for domain-controllers as well as COTS hardware.

On multi-core systems, SCP can be used to implement fail-operational behavior:

Two channels are protected with SCP. SCP detects whether a failure occurs in the

channels. When one channel fails, operation can continue with the results of the

correctly executed channel.

Furthermore, SCP can replace or supplement software mechanisms for safety-

critical systems such as instruction set tests, cyclic memory checks, and redundant

data storage. SCP provides the same detection capabilities as these software mech-

anisms in addition to the other advantages already mentioned.

5 Conclusion

SCP enables commodity high-performance processors to be used within safety-crit-

ical automotive applications with respect to execution integrity. We expect a toler-

able performance impact of SCP when software is accurately split into critical and

non-critical and adequate hardware is used. Hence, Software Coded Processing is a

suitable and already available solution to the challenge of computing performance

and execution integrity for future automotive applications.

References

[1] International Organization for Standardization, “ISO 26262: Road vehicles -

Functional safety.” International standard, First edition, 2011.

[2] BMW, “BMW vernetzt die Freude am Fahren.” http://www.bmw.de, 2014.

12

[3] Michel H-U., Kaule D., and Salfer M., “Vision einer intelligenten Vernet-

zung.” BMW AG in elektroniknet.de, 2012.

[4] Gut G., Allmann C., Schurius M., and Schmidt K., “Reduction of Electronic

Control Units in Electric Vehicles Using Multicore Technology.” ForTISS

GmbH, Munich and Audi Electronics Venture GmbH, Gaimersheim, Ger-

many, Springer-Verlag, 2012.

[5] Reinhardt D. and Kucera M., “Domain Controlled Architecture, A New Ap-

proach for Large Scale Software Integrated Automotive Systems.” in PECCS

- International Conference on Pervasive and Embedded Computing and Com-

munication Systems, 2013.

[6] Ainhauser C., Bulwahn L., and Hildisch A., “Autonomous driving needs

ROS.” BMW Car IT GmbH, ROSCon, Stuttgart, Germany, 2013.

[7] Bulwahn L., Ochs T., and Wagner D., “Research on an Open-Source Soft-

ware Platform For Autonomous Driving Systems.” BMW Car IT GmbH, Mu-

nich, Germany, 2013.

[8] Baumeister M., “Addressing Safety Standard Requirements for IEC 61508

(SIL 3) and ISO 26262 (ASIL D) with the MPC5643L 32-bit Power Archi-

tecture®Microcontroller.” Freescale Semiconductor, Inc., 2010.

[9] Ben Cheikh L. and Verma A., “Safety joins performance.” Infineon Technol-

ogies AG, 2014.

[10] Circello J., “Rationale for Multicore Architectures in Auto Apps.” Freescale

Technology Forum, 2011.

[11] Joachim Fritzsch, “Software-based Controller Integrity in Safety-critical Au-

tomotive Systems.” Master thesis, BMW Group and Technische Universität

Dresden, 2014.

[12] Beckschulze E., Salewski F., Siegbert T., and Kowalewski S., “Fault Han-

dling Approaches on Dual-Core Microcontrollers in Safety-Critical Automo-

tive Applications.” Embedded Software Laboratory, RWTH Aachen Univer-

sity, Germany, 2008.

[13] Bernick D., Bruckert B., Del Vigna P., Garcia D., Jardine R., Klecka J., and

Smullen J., “NonStop Advanced Architecture.” Hewlett Packard Company,

Proceedings of the International Conference on Dependable Systems and

Networks (DSN), 2005.

[14] Wappler U. and Fetzer C., “Software Encoded Processing: Building Depend-

able Systems with Commodity Hardware.” Technische Universität Dresden,

Department of Computer Science, SAFECOMP 2007.

[15] Schiffel U., Süßkraut M., and Fetzer F., “AN-Encoding Compiler: Building

Safety-Critical Systems with Commodity Hardware”, Technische Universität

Dresden, Department of Computer Science, SAFECOMP 2009, Proceedings

of the 28th International Conference on Computer Safety, Reliability, and

Security, Springer-Verlag, 2009.

[16] Süßkraut M., Kaienburg J., and Schmitt A., “Safe Program Execution with

Diversified Encoding”, SIListra Systems GmbH, embedded world Confer-

ence 2015, Nuremberg, Germany.

13

[17] Süßkraut M. and Kaienburg J., “Safety-Critical Smart Systems with Software

Coded Processing”, SIListra Systems GmbH, Smart Systems Integration

2015, Copenhagen, Denmark.

Full Authors’ Information

Dipl.-Ing. M. Eng. Majdi Ghadhab

BMW AG

Taunusstr. 41

80807, München

Germany

E-mail: majdi.el.ghadhab@bmw.de

Dipl.-Phys. Jörg Kaienburg

SIListra Systems GmbH

Niederwaldstr. 37

01277, Dresden

Germany

E-mail: joerg.kaienburg@silistra-systems.com

Dr.-Ing. Martin Süßkraut

SIListra Systems GmbH

Niederwaldstr. 37

01277, Dresden

Germany

E-mail: martin.suesskraut@silistra-systems.com

Prof. Dr. Christof Fetzer

Technische Universität Dresden

Nöthnitzer Straße 46

012787 Dresden

Germany

E-mail: christof.fetzer@tu-dresden.de

Keywords

Software-intensive Systems, Automotive Controller, Functional Safety, Coded Pro-

cessing.

mailto:majdi.el.ghadhab@bmw.de
mailto:joerg.kaienburg@silistra-systems.com
mailto:martin.suesskraut@silistra-systems.com
mailto:christof.fetzer@tu-dresden.de

